《对称图形》教学反思

时间:2023-12-21 17:05:49
《对称图形》教学反思

《对称图形》教学反思

身为一位优秀的老师,我们要有一流的教学能力,教学的心得体会可以总结在教学反思中,我们该怎么去写教学反思呢?下面是小编整理的《对称图形》教学反思,欢迎阅读与收藏。

《对称图形》教学反思1

对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。

本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。

一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2 剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。

这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。

二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。

这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。

三、想办法做出以各轴对称图形、并分组展示自己的作品。

这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。

1

本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。

2、五年级数学下册《因数与倍数》的教学反思

《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。

(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。

(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。

(3)因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。

虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:

11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?

特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。

3、五年级数学下册《合数与质数》的教学反思

在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中体验了解决问题的喜悦或失败的情感。 2

一、学生参与面广,学习兴趣浓。

新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,我注重面向全体学生,使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望。如:让学生利用学具去摆拼,用“2、3、4……12个小正方形分别可以拼成几种长方形的方法去体验质数与合数的不同之处,以操作代替教师讲解,激发了学生的学习兴趣和求知欲,使全体同学都参与到“活动”中来,课堂气氛愉快热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。

二、从学生的角度出发,把课堂的主动权还给学生。

课堂教学,学生是“主角”,教师只是“配角”,教学中应把大量时间和空间留给学生,使每个学生都有学习、讨论、观察,思考的机会。在教学中我除了给学生动手拼摆的机会,还让学生把几个数(如2、3、4、5、6、7、8、9、10、11、12等)进行分类。尽管学生可能分类标准不一样,但他们都能把只有两个因数的数分在一类,把含有2个以上的因数的数放在一起。这样教师就可以顺势引导学生说出什么叫质数,什么叫合数。再让学生用自己的语言归纳合数与质数。在这个过程中,引导学生参与知识的形成过程,有利于培养和提高学生获取知识的能力。

三、点燃学生智慧的火花,让学生真正活起来。

爱因斯坦说过:“提出一个问题比解决一个问题更重要。”在本节课的课后我设计了这样一个环节,你还想研究质数、合数有关哪些方面的知识。这个学习任务既是给学生在课堂上一个探究的任务,也是给学生在课外留下一个拓展的空间。使每个学生都能根据自己不同的水平去探究属于自己的数学空间,从而让不同的学生在数学上得到了不同的发展。

4、五年级数学下册《公因数和最大公因数》的教学反思

《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并 3

且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。

对照《课标》的理念,我 ……此处隐藏14571个字……学生充分感受轴对称图形的特征。

3.在充分的练习中巩固。

给出轴对称图形和对称轴的名称以后,我没有更多的去强调定义。而是出示在学习和生活中常见的汉字、数字、字母、平面图形等让学生去判断是否是对称图形,画出对称轴等练习,让学生在练习中进一步去构建对称轴和轴对称图形的概念。让学生对轴对称图形和对称轴有一个更准确、更深刻的了解。

三、感受数学的美。

数学与生活紧密联系,教学中,要让学生带着数学走出课堂,走进生活去理解生活中的数学,去体验数学的价值。对称的物体给人一种匀称、均衡的感觉,一种美感。本节课我抓住对称图形的特点师生一起欣赏生活中一幅副精美的对称图片,给学生带来美的感受。

《轴对称图形》数学教学反思

本节课主要是画对称图形的对称轴。在新课导入时,我出示飞机图、奖杯图、蝴蝶图,问学生这些图有什么共同特征?设计此环节,可以引起学生对有关知识的回忆,并就对称轴的画法我为学生作了示范,说明对称轴一般应画成虚线,提出本节课重点研究对称轴,使学生明确了学习目标。

新授课时,我让学生折长方形纸的对称轴,一开始,学生只折了一条对称轴,我问了学生还可以怎么折?学生又折出了一种,我分别展示了两种折法。有一个学生说还有:沿对角线折,我让他折出来给大家看后,排除了沿对角线折的方法,学生明白了长方形只有两条对称轴。然后研究怎样画长方形的对称轴,让学生自主发现、找出规律:量出长度,并取中点再画。教学“试一试”时,因为有了探究长方形对称轴的基础,所以放手让学生尝试折纸、作图。

大部分学生找出了四条对称轴,还有小部分学生只找出了两条。在评讲时,通过操作,提高了后进生的认识。后面的练习是重点让学生画出一个轴对称图形的所有对称轴。

但是学生找不全,甚至把第2题的第四幅图也认为是对称图形。我用事先准备好的图形让学生折一折,进一步体会轴对称图形的对称轴条数不只一条。并概括出是正几边形就有几条对称轴。并强调学生要规范地去画。效果还可以。

《对称图形》教学反思15

对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。

本册第一课教学任务就是教学轴对称,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。

创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。

这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。

本节课教学中我更多的是作为学生学习的引导者、组织者、欣赏者而存在于学生的学习过程之中。教学中我更多的是关注学生对数学美感的感受、捕捉和创造能力的培养。主要体现在以下几个方面:

一、通过游戏与生活,感知对称美。

学生们都学习过剪纸,就已经会用对折的方法剪出左右两边形状、大小完全一样的图形。因此,现实中一些对称的图形学生在课前早已接触过,然而何谓“对称”,这一概念对于学生来说却是新鲜的。由此可见,如何让学生科学地认识并建立“对称”的概念是我这节课要达成的重要目标之一。因此,我设计“玩纸飞机”的这样一个活动,有效地帮助学生构建科学的“对称”概念,抓住对称的本质特征,让学生对“对称”的概念有更清晰的认识,也为其在生活中如何判断对称现象提供方法。

二、动手创造,感受对称美。

在“剪对称图形”这一环节,我注重学生主体性的探索与发现过程的经历,试图让学生通过自己的经验和思维得到对新知识的理解、顿悟。当出现一部分学生剪得慢,甚至剪不出来的情况时,我没有置之不理,更没有主导学生的思维,而是充分利用了学生的差异资源,提供了一个让学生探索、对话的时间和空间。学生在交流中相互启发,在尝试、失败、反思、再创造的过程中,理解知识,掌握方法,学会思考,并获得情感体验。尽管这里花费了一些时间,但充分体现了学生“悟”的过程。

三、欣赏图片,感悟对称美。

在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。

四、知识迁移,直观转抽象。

最后进行的是知识迁移,将知识逻辑化。探究平面图形中哪一些是轴对称图形,哪一些不是轴对称图形?这是一个教学难点,教师发给学生各种有代表性的平面图形,放手让他们自主去解决。学生通过亲自去折一折,能够很快的辨别出来是还是不是。又趁机让学生再次对这些图形按照对称轴的条数进行分类,这样,学生对轴对称图形又有了新的认识。因为三角形、梯形、平行四边形是这一部分最容易出错的地方,所以又指导学生对这些图形进行再次总结。这一过程的自主学习,可以随机出示几道判断题。对于知识点的处理,要让学生亲自去感受、去认知、去体验,学生将会对知识掌握得更加牢固。

当然这节课也是有不足之处的,问题主要是小组合作停留在表面形式上。练习时,我给学生设计了一道具有开放性的题目:以小组为单位,让每个学生发挥想象,剪出一些轴对称图形。这个合作题目我们细想一下,是很能体现数学学习的合作学习的。然而我布置后,学生在事先准备的彩纸上剪出一些轴对称图形,基本上是独立完成的,小组之间几乎没有交流,基本停留在独立学习的层次上,没有真正地讨论和合作,没有发挥小组合作的优势,学习效果没能真正代表本小组的水平。而且在汇报时,我只是让学生展示了一下自己的作品,没有进行知识的总结和挖掘。仔细思考一下,如果让每个小组利用所剪的轴对称图形拼成一幅美丽的画,不是更能体现合作学习?合作过程中可以让组长分配,学生互帮互学,汇报时说出自己是怎样剪的,正好复习了轴对称图形的特征。我过于片面地追求课堂小组合作学习这一形式,对小组合作学习的目的、时机和过程没有进行认真设计,学生的合作流于形式,合作意识不强,只要有疑问,无论难易,甚至一些毫无讨论价值的问题都要在小组内讨论。合作又没有时间保证,有时学生还没进入状态,小组合作学习就在老师的要求下结束了。

这节课的教学,使我感受到,数学不再是简单的数学课,它将和精彩的生活共同演绎数学文化以及数学图形的美丽。“数学,如果正确地看她,不但拥有真理,而且也具有至高的美。数学提供了一种精确简洁通用的科学语言,数学语言正是以她的结构与内容上的完美给人以美的感受。”

《《对称图形》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式